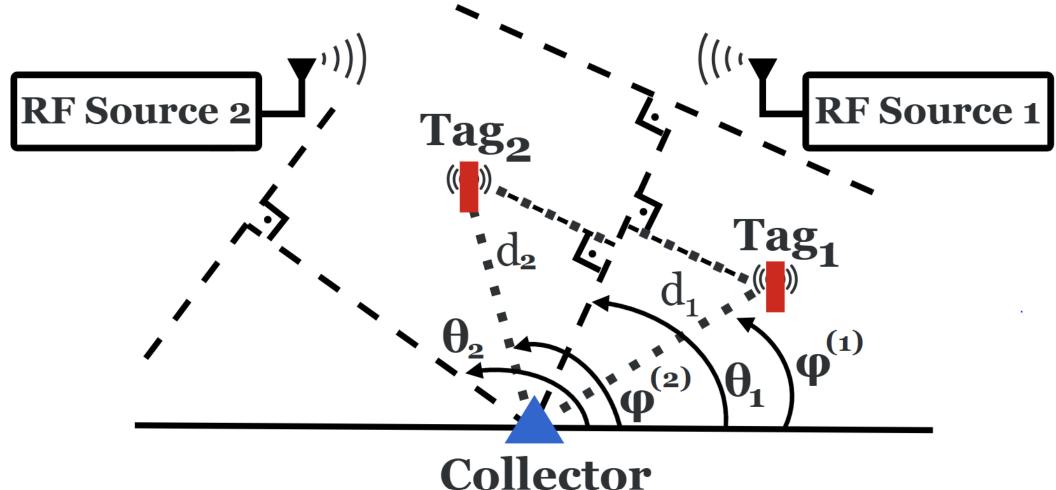


EFFICIENT: BackscattEr FabrIC For MultidImensional SpEctrum SituatioNal AwarEness and ProTection

PI: Aggelos Bletsas, Co-Pis: Narayan Mandayam, Ivan Seskar WINLAB, Dept. of Electrical and Computer Engineering, Rutgers, The State University of New Jersey

Goal

☐ Direction of arrival (DoA) estimation using low-cost passive backscatter radio tags and a single antenna receiver


Prior Art – Single Source

- ☐ Passive backscatter tags emulate a spatially distributed antenna array
- ☐ The source signal is modulated onto different frequency bands
- ☐ No CSI or centralized coordination is required

Topologies

- \Box Linear: Inter-element spacing $d_0 = \frac{\lambda}{2}$
- \Box Linear-2: ULA with nominal spacing $d_0 =$ 2λ perturbed as $\sim \mathcal{N}(\mathbf{x}_{tag}, \frac{d_0}{4}I_2)$
- ☐ Random-Grid: Regular grid with nominal spacing $d_0 = 12.5\lambda$ perturbed as ~ $\mathcal{N}(\mathbf{x}_{\text{tag}}, \frac{d_0}{4}I_2)$
- ☐ Random: Tag angles and distances from the receiver drawn from $U(0,\pi)$ and U(1,20) m, respectively

Generalization – Multiple Sources

☐ Tag-to-collector delay

$$\tau_m^{(n)} = \tau_R^{(n)} - \Delta \tau_m^{(n)}, \ \Delta \tau_m^{(n)} = \frac{d_m \cos(\phi^{(m)} - \theta_n)}{c}$$

☐ Complex baseband equivalent signal at the tag

$$\tilde{c}_m(t) = \sum_{n=1}^{N} a_m^{(n)} \mathbf{m}_n \left(t - \tau_m^{(n)} \right)$$

☐ Tag's switching signal

$$x_{\rm tag}^{(m)}(t) \approx m_{\rm dc}^{(m)} e^{j\theta_{\rm dc}^{(m)}} + m_{\rm tag}^{(m)} e^{j\theta_{\rm tag}^{(m)}} \cos\left(2\pi F_{\rm sw}^{(m)}t + \varphi_m\right)$$

☐ Tag-reflected signal at the collector

$$y_m(t) = \tilde{c}_m(t) x_{\text{tag}}^{(m)} \left(t - \tau_{\text{TR}}^{(m)} \right) s_m h_{\text{TR}}^{(m)} e^{-j2\pi\Delta F t}$$

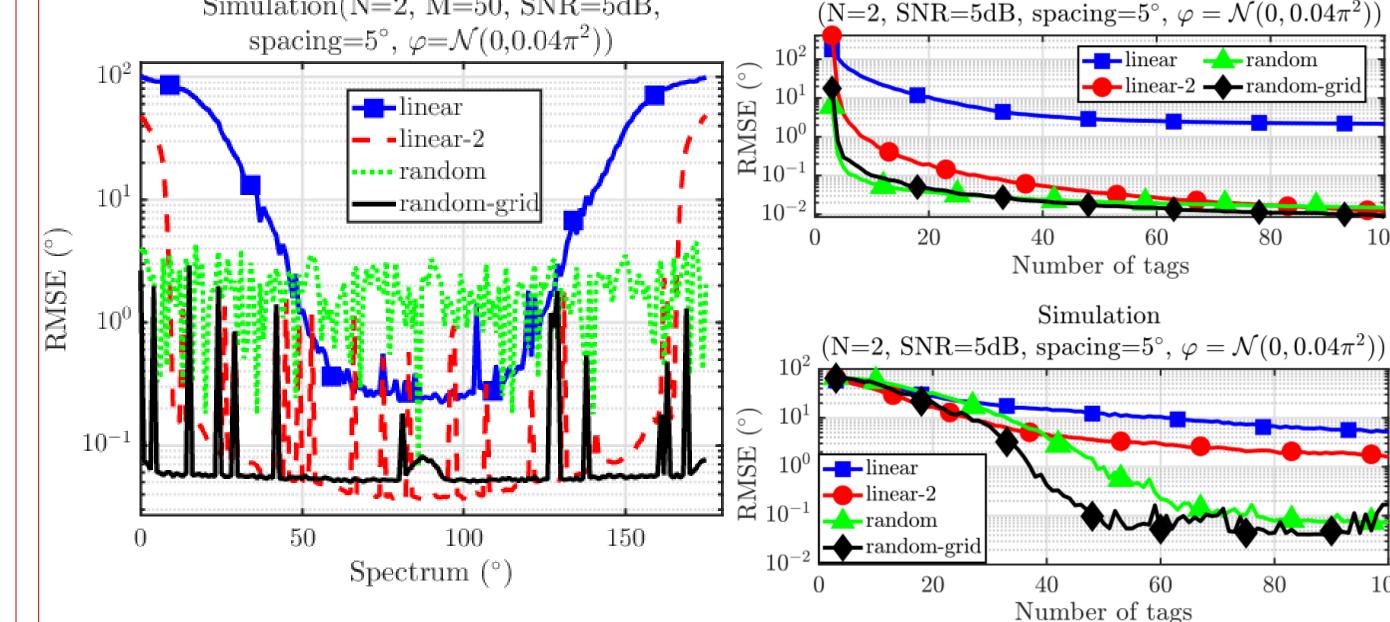
☐ Received signal at the collector

$$y(t) = \sum_{n=1}^{N} a_{\text{CR}}^{(n)} e^{-j\phi_{\text{CR}}^{(n)}} \mathbf{m}_n(t) e^{-j2\pi\Delta Ft} + \sum_{m=1}^{M} y_m(t) + n(t).$$

☐ Correlation-based tag signal extraction

$$r_m^{\pm} = \sum_{k=0}^{L-1} y[k] \left(e^{\pm j2\pi F_{\text{sw}}^{(m)} kT_s} \right)^*.$$

- $F_{\rm sw}^{(m)} \gg {\rm BW}({\rm m}_n(t)),$
- $\left| F_{\text{sw}}^{(i)} F_{\text{sw}}^{(j)} \right| \gg \text{BW}(\mathbf{m}_n(t)), \ i \neq j, \quad i, j \in \{1, \dots, M\}$
- ☐ Statistics from the correlators' outputs


$$\mathbf{r}_{q} = \begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{M} \end{bmatrix}_{q} = \sum_{n=1}^{N} \mathbf{h}_{p}(\theta_{n}) \mu_{c,n}^{(q)} + \mathbf{n}_{q} = \mathbf{A}(\boldsymbol{\theta}) \boldsymbol{\mu} + \mathbf{n}_{q},$$

where $\mathbf{A}(\boldsymbol{\theta}) = [\mathbf{h}_p(\theta_1), \mathbf{h}_p(\theta_2), \dots, \mathbf{h}_p(\theta_N)],$ $\mathbf{h}_p(\theta) \triangleq (\mathbf{h}(\theta) \odot \mathbf{g}), \mathbf{h}(\theta) \triangleq [h_1(\theta), \dots, h_M(\theta)]^T,$ $\mathbf{g} \triangleq [\gamma_1 \cos(\Phi_1), \dots, \gamma_M \cos(\Phi_M)]^T, q \in \{0, \dots, N_s - 1\},$ $\boldsymbol{\mu} = \begin{bmatrix} \mu_{c,1}^{(q)}, \ \mu_{c,2}^{(q)}, \ \dots, \ \mu_{c,N}^{(q)} \end{bmatrix}^{\mathsf{T}}, \ \mathbf{n}_q \sim \mathcal{CN}(0, 2\sigma_n^2 \mathbb{I}_M)$ $\underline{h}_m(\theta_n) \stackrel{\triangle}{=} e^{j2\pi} \frac{d_m \cos\left(\phi^{(m)} - \theta_n\right)}{\lambda}$

Analytical and Simulation Results Beampattern for 50 tags (linear) $-\varphi = \mathcal{N}(0.0.04\pi^2)$ ▲ Collector

Spectrum (degrees)

Cramér-Rao Lower Bound

Simulation(N=2, M=50, SNR=5dB,

- ☐ The synchronization mismatch disrupts the array beampattern
- ☐ Tag position randomization eliminates sparse array ambiguities
- ☐ The random-grid array offers better coverage than the linear ones
- ☐ The random-grid array attains accuracy closer to CRB than the linear arrays

Conclusion

- ☐ Extended the single-source method to multiple signal sources ☐ Tag position randomization improves DoA estimation
 - Acknowledgments

☐ This work was supported by NSF project 2433991

